604 research outputs found

    Autonomic cardiac control in animal models of cardiovascular diseases II. Variability analysis in transgenic rats with alpha-tropomyosin mutations Asp175Asn and Glu180Gly

    Get PDF
    Animal models of cardiovascular diseases allow to investigate relevant pathogenetic mechanisms in detail. In the present study, the mutations Asp175Asn and Glu180Gly in alpha-tropomyosin (TPM1), known cause familiar hypertrophic cardiomyopathy (FHC) were studied for changes in hemodynamic parameters and spontaneous baroreflex regulation in transgenic rats in comparison to transgenic and non-transgenic controls by telemetry. Heart rate variability (HRV) and blood pressure variability (BPV) were analyzed using time- and frequency domain, as well as non-linear measures. The dual sequence method was used for the estimation of the baroreflex regulation. In transgenic rats harboring mutated TPM1, changes in HRV were detected during exercise, but not at rest. Both mutations, Asp175Asn and Glu180Gly, caused increased low frequency power. In addition, in animals with mutation Asp175Asn a reduced total HRV was observed. BPV did not show any differences between all transgenic animal lines. During exercise, a strong increase in the number of bradycardic and tachycardic fluctuations accompanied with decreased baroreflex sensitivity (BRS) was detected in animals with either TPM1 mutation, Asp175Asn or Glu180Gly. These data suggest, that the analysis of cardiac autonomic control, particularly of baroreflex regulation, represents a powerful non-invasive approach to investigate the effects of subtle changes in sarcomeric architecture on cardiac physiology in vivo. In case of mutations Asp175Asn or Glu180Gly in TPM1, early detection of alterations in autonomic cardiac control could help to prevent sudden cardiac death in affected persons

    Tunnelling Studies of Two-Dimensional States in Semiconductors with Inverted Band Structure: Spin-orbit Splitting, Resonant Broadening

    Full text link
    The results of tunnelling studies of the energy spectrum of two-dimensional (2D) states in a surface quantum well in a semiconductor with inverted band structure are presented. The energy dependence of quasimomentum of the 2D states over a wide energy range is obtained from the analysis of tunnelling conductivity oscillations in a quantizing magnetic field. The spin-orbit splitting of the energy spectrum of 2D states, due to inversion asymmetry of the surface quantum well, and the broadening of 2D states at the energies, when they are in resonance with the heavy hole valence band, are investigated in structures with different strength of the surface quantum well. A quantitative analysis is carried out within the framework of the Kane model of the energy spectrum. The theoretical results are in good agreement with the tunnelling spectroscopy data.Comment: 29 pages, RevTeX, submitted in Phys.Rev.B. Figures available on request from [email protected]

    Josephson current through a Luttinger liquid

    Full text link
    We study the Josephson effect through a one-dimensional system of interacting electrons, connected to two superconductors by tunnel junctions. The interactions are treated in the framework of the one-channel Luttinger model. At zero temperature, the Josephson critical current is found to decay algebraically with increasing distance between the junctions. The exponent is proportional to the strength of the Coulomb interaction. If the Luttinger liquid has a finite size, the Josephson current depends on the total number of electrons modulo 4. These parity effects are studied for the ring, coupled capacitively to a gate-voltage and threaded by a magnetic flux. The Josephson current changes continuously as a function of the gate voltage and {\em stepwise} as a function of the magnetic flux. The electron-electron interaction introduces {\em qualitatively} new features compared to the non-interacting case.Comment: 8 pages REVTEX , 4 figures available upon reques

    First Order Static Excitation Potential: Scheme for Excitation Energies and Transition Moments

    Full text link
    We present an approximation scheme for the calculation of the principal excitation energies and transition moments of finite many-body systems. The scheme is derived from a first order approximation to the self energy of a recently proposed extended particle-hole Green's function. A hermitian eigenvalue problem is encountered of the same size as the well-known Random Phase Approximation (RPA). We find that it yields a size consistent description of the excitation properties and removes an inconsistent treatment of the ground state correlation by the RPA. By presenting a hermitian eigenvalue problem the new scheme avoids the instabilities of the RPA and should be well suited for large scale numerical calculations. These and additional properties of the new approximation scheme are illuminated by a very simple exactly solvable model.Comment: 15 pages revtex, 1 eps figure included, corrections in Eq. (A1) and Sec. II

    Optical response of small silver clusters

    Get PDF
    The time-dependent local density approximation is applied to the optical response of the silver clusters, Ag_2, Ag_3, Ag_8 and Ag_9^+. The calculation includes all the electrons beyond the closed-shell Ag^{+11} ionic core, thus including for the first time explicitly the filled d-shell in the response. The excitation energy of the strong surface plasmon near 4 eV agrees well with experiment. The theoretical transition strength is quenched by a factor of 4 with respect to the pure s-electron sum rule in Ag_8 due to the d-electrons. A comparable amount of strength lies in complex states below 6 eV excitation. The total below 6 eV, about 50% of the s sum rule, is consistent with published experiments.Comment: 13 pages RevTex and 9 Postscript figure

    DC and AC Josephson Effect in a Superconductor-Luttinger Liquid-Superconductor System

    Full text link
    We calculate both the DC and the AC Josephson current through a one-dimensional system of interacting electrons, connected to two superconductors by tunnel junctions. We treat the (repulsive) Coulomb interaction in the framework of the one-channel, spin-1/21/2 Luttinger model. The Josephson current is obtained for two geometries of experimental relevance: a quantum wire and a ring. At zero temperature, the critical current is found to decay algebraically with increasing distance dd between the junctions. The decay is characterized by an exponent which depends on the strength of the interaction. At finite temperatures TT, lower than the superconducting transition temperature TcT_c, there is a crossover from algebraic to exponential decay of the critical current as a function of dd, at a distance of the order of vF/kBT\hbar v_F/k_B T. Moreover, the dependence of critical current on temperature shows non-monotonic behavior. If the Luttinger liquid is confined to a ring of circumference LL, coupled capacitively to a gate voltage and threaded by a magnetic flux, the Josephson current shows remarkable parity effects under the variation of these parameters. For some values of the gate voltage and applied flux, the ring acts as a π\pi-junction. These features are robust against thermal fluctuations up to temperatures on the order of vF/kBL\hbar v_F/k_B L. For the wire-geometry, we have also studied the AC-Josephson effect. The amplitude and the phase of the time-dependent Josephson current are affected by electron-electron interactions. Specifically, the amplitude shows pronounced oscillations as a function of the bias voltage due to the difference between the velocities of spin and charge excitations in the Luttinger liquid. Therefore, the AC Josephson effect can be used as a tool for the observation o

    Group theoretical analysis of symmetry breaking in two-dimensional quantum dots

    Full text link
    We present a group theoretical study of the symmetry-broken unrestricted Hartree-Fock orbitals and electron densities in the case of a two-dimensional N-electron single quantum dot (with and without an external magnetic field). The breaking of rotational symmetry results in canonical orbitals that (1) are associated with the eigenvectors of a Hueckel hamiltonian having sites at the positions determined by the equilibrium molecular configuration of the classical N-electron problem, and (2) transform according to the irreducible representations of the point group specified by the discrete symmetries of this classical molecular configuration. Through restoration of the total-spin and rotational symmetries via projection techniques, we show that the point-group discrete symmetry of the unrestricted Hartree-Fock wave function underlies the appearance of magic angular momenta (familiar from exact-diagonalization studies) in the excitation spectra of the quantum dot. Furthermore, this two-step symmetry-breaking/symmetry-restoration method accurately describes the energy spectra associated with the magic angular momenta.Comment: A section VI.B entitled "Quantitative description of the lowest rotational band" has been added. 16 pages. Revtex with 10 EPS figures. A version of the manuscript with high quality figures is available at http://calcite.physics.gatech.edu/~costas/uhf_group.html For related papers, see http://www.prism.gatech.edu/~ph274c

    The triplet excited state of the biocative compound thiabendazole. Characterization and suitability as reporter for cyclodextrin complexation

    Full text link
    Fluorescence spectroscopy, laser flash photolysis (LPF), and density functional theory calculations have been performed to characterize the photobehavior of thiabendazole (1). Direct LFP of 1 results in the generation of a transient absorbing at λmax = 570 nm identified as the triplet excited state (31∗). The intersystem crossing quantum yield is 0.91, and the triplet energy is 288 kJ mol−1. The singlet–triplet energy gap is 84 kJ mol−1. The behavior of thiabendazole within CDs results in a marked enhancement of the triplet lifetime, this change is attributed to the mobility restrictions of included 1 imposed by the cyclodextrin cavities.Financial support from the MICINN (Grants: CTQ2009-11027/BQU, CTQ2010-19909 and pre-doctoral fellowship to P.B.) and the Generalitat Valenciana (Prometeo Program) is gratefully acknowledged.Bartovsky, P.; Domingo, LR.; Jornet Olivé, MD.; Miranda Alonso, MÁ.; Tormos Faus, RE. (2012). The triplet excited state of the biocative compound thiabendazole. Characterization and suitability as reporter for cyclodextrin complexation. Chemical Physics Letters. 525-526:166-170. https://doi.org/10.1016/j.cplett.2012.01.001S166170525-52

    Xanthone-photosensitized detoxification of the veterinary anthelmintic fenbendazole

    Full text link
    Fenbendazole (1) is a common veterinary anthelmintic, toxic to water living microorganisms. Fluorescence quantum yields of 1 were found to be 0.11 in acetonitrile, 0.068 in methanol, 0.034 in cyclohexane, and 0.013 in water. The singlet excited state energy was ca. 96 kcal mol(-1) in all solvents. The phosphorescence spectrum of 1 in ethanol at 77 K displayed a maximum at 450 nm, leading to a triplet energy of 75 kcal mol(-1). Experimental excited state energies agree well with the results of OFT calculations at the time-dependent B3LYP/6-311+G(d,p)//B3LYP/6-31G(d) level. Laser flash photolysis (LFP) of 1 at 266 nm led to transients absorbing in the 300-700 nm range, ascribed to radical cation 1(.+), which were also observed upon 355 nm LFP of xanthone (XA) in the presence of 1. Solar-simulated photolysis revealed XA-enhanced photodegradation of 1 and led to decreased toxicity, as shown by Daphnia magna assays. (c) 2013 Elsevier B.V. All rights reserved.Financial support from the MICINN (CTQ2010-19909) and the Generalitat Valenciana (Prometeo Program) is gratefully acknowledged.Jornet Olivé, MD.; Castillo López, MÁ.; Sabater Marco, C.; R. Domingo, L.; Tormos Faus, RE.; Miranda Alonso, MÁ. (2013). Xanthone-photosensitized detoxification of the veterinary anthelmintic fenbendazole. Journal of Photochemistry and Photobiology A: Chemistry. 264:34-40. https://doi.org/10.1016/j.jphotochem.2013.05.002S344026
    corecore